Questions?
See the FAQ
or other info.

Polytope of Type {5,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,20,2}*960
if this polytope has a name.
Group : SmallGroup(960,10889)
Rank : 4
Schlafli Type : {5,20,2}
Number of vertices, edges, etc : 12, 120, 48, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,20,2,2} of size 1920
Vertex Figure Of :
   {2,5,20,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,10,2}*480
   4-fold quotients : {5,5,2}*240, {5,10,2}*240a, {5,10,2}*240b
   8-fold quotients : {5,5,2}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,20,4}*1920, {10,20,2}*1920b
Permutation Representation (GAP) :
s0 := ( 2,10)( 3,12)( 4,17)( 5,19)( 7,38)(11,28)(13,44)(14,43)(15,34)(20,23)
(21,36)(22,37)(24,26)(29,33)(30,31)(32,35)(39,47)(40,46)(41,45)(42,48);;
s1 := ( 2, 3)( 4,17)( 5,19)( 7,28)( 8,35)( 9,29)(10,15)(11,26)(12,39)(13,25)
(14,27)(20,38)(21,33)(22,44)(23,31)(24,30)(32,42)(34,41)(40,43)(45,47);;
s2 := ( 1, 8)( 2, 4)( 3,33)( 5,24)( 6,25)( 7,21)( 9,16)(10,17)(11,32)(12,29)
(13,31)(14,34)(15,43)(18,27)(19,26)(20,46)(22,39)(23,40)(28,35)(30,44)(36,38)
(37,47)(41,42)(45,48);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 2,10)( 3,12)( 4,17)( 5,19)( 7,38)(11,28)(13,44)(14,43)(15,34)
(20,23)(21,36)(22,37)(24,26)(29,33)(30,31)(32,35)(39,47)(40,46)(41,45)(42,48);
s1 := Sym(50)!( 2, 3)( 4,17)( 5,19)( 7,28)( 8,35)( 9,29)(10,15)(11,26)(12,39)
(13,25)(14,27)(20,38)(21,33)(22,44)(23,31)(24,30)(32,42)(34,41)(40,43)(45,47);
s2 := Sym(50)!( 1, 8)( 2, 4)( 3,33)( 5,24)( 6,25)( 7,21)( 9,16)(10,17)(11,32)
(12,29)(13,31)(14,34)(15,43)(18,27)(19,26)(20,46)(22,39)(23,40)(28,35)(30,44)
(36,38)(37,47)(41,42)(45,48);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1 >; 
 

to this polytope