Questions?
See the FAQ
or other info.

# Polytope of Type {2,6,10,2}

Atlas Canonical Name : {2,6,10,2}*960e
if this polytope has a name.
Group : SmallGroup(960,11356)
Rank : 5
Schlafli Type : {2,6,10,2}
Number of vertices, edges, etc : 2, 12, 60, 20, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,10,2,2} of size 1920
Vertex Figure Of :
{2,2,6,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,10,2}*480a, {2,6,5,2}*480b
4-fold quotients : {2,3,5,2}*240
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,10,2}*1920c, {2,12,10,2}*1920d, {4,6,10,2}*1920e, {2,6,10,2}*1920b
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11);;
s2 := ( 3, 4)( 6, 7)( 8,10)( 9,11);;
s3 := (4,6)(5,7);;
s4 := (12,13);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(13)!(1,2);
s1 := Sym(13)!( 4, 5)( 6, 7)( 8, 9)(10,11);
s2 := Sym(13)!( 3, 4)( 6, 7)( 8,10)( 9,11);
s3 := Sym(13)!(4,6)(5,7);
s4 := Sym(13)!(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2*s1*s2 >;

```

to this polytope