Questions?
See the FAQ
or other info.

Polytope of Type {60,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {60,8}*960a
Also Known As : {60,8|2}. if this polytope has another name.
Group : SmallGroup(960,5069)
Rank : 3
Schlafli Type : {60,8}
Number of vertices, edges, etc : 60, 240, 8
Order of s0s1s2 : 120
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {60,8,2} of size 1920
Vertex Figure Of :
   {2,60,8} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {60,4}*480a, {30,8}*480
   3-fold quotients : {20,8}*320a
   4-fold quotients : {60,2}*240, {30,4}*240a
   5-fold quotients : {12,8}*192a
   6-fold quotients : {20,4}*160, {10,8}*160
   8-fold quotients : {30,2}*120
   10-fold quotients : {12,4}*96a, {6,8}*96
   12-fold quotients : {20,2}*80, {10,4}*80
   15-fold quotients : {4,8}*64a
   16-fold quotients : {15,2}*60
   20-fold quotients : {12,2}*48, {6,4}*48a
   24-fold quotients : {10,2}*40
   30-fold quotients : {4,4}*32, {2,8}*32
   40-fold quotients : {6,2}*24
   48-fold quotients : {5,2}*20
   60-fold quotients : {2,4}*16, {4,2}*16
   80-fold quotients : {3,2}*12
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {60,8}*1920a, {120,8}*1920a, {120,8}*1920c, {60,16}*1920a, {60,16}*1920b
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)( 33, 34)
( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)( 51, 56)
( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 62, 65)( 63, 64)( 66, 71)( 67, 75)
( 68, 74)( 69, 73)( 70, 72)( 77, 80)( 78, 79)( 81, 86)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 92, 95)( 93, 94)( 96,101)( 97,105)( 98,104)( 99,103)
(100,102)(107,110)(108,109)(111,116)(112,120)(113,119)(114,118)(115,117)
(121,181)(122,185)(123,184)(124,183)(125,182)(126,191)(127,195)(128,194)
(129,193)(130,192)(131,186)(132,190)(133,189)(134,188)(135,187)(136,196)
(137,200)(138,199)(139,198)(140,197)(141,206)(142,210)(143,209)(144,208)
(145,207)(146,201)(147,205)(148,204)(149,203)(150,202)(151,211)(152,215)
(153,214)(154,213)(155,212)(156,221)(157,225)(158,224)(159,223)(160,222)
(161,216)(162,220)(163,219)(164,218)(165,217)(166,226)(167,230)(168,229)
(169,228)(170,227)(171,236)(172,240)(173,239)(174,238)(175,237)(176,231)
(177,235)(178,234)(179,233)(180,232);;
s1 := (  1,127)(  2,126)(  3,130)(  4,129)(  5,128)(  6,122)(  7,121)(  8,125)
(  9,124)( 10,123)( 11,132)( 12,131)( 13,135)( 14,134)( 15,133)( 16,142)
( 17,141)( 18,145)( 19,144)( 20,143)( 21,137)( 22,136)( 23,140)( 24,139)
( 25,138)( 26,147)( 27,146)( 28,150)( 29,149)( 30,148)( 31,172)( 32,171)
( 33,175)( 34,174)( 35,173)( 36,167)( 37,166)( 38,170)( 39,169)( 40,168)
( 41,177)( 42,176)( 43,180)( 44,179)( 45,178)( 46,157)( 47,156)( 48,160)
( 49,159)( 50,158)( 51,152)( 52,151)( 53,155)( 54,154)( 55,153)( 56,162)
( 57,161)( 58,165)( 59,164)( 60,163)( 61,187)( 62,186)( 63,190)( 64,189)
( 65,188)( 66,182)( 67,181)( 68,185)( 69,184)( 70,183)( 71,192)( 72,191)
( 73,195)( 74,194)( 75,193)( 76,202)( 77,201)( 78,205)( 79,204)( 80,203)
( 81,197)( 82,196)( 83,200)( 84,199)( 85,198)( 86,207)( 87,206)( 88,210)
( 89,209)( 90,208)( 91,232)( 92,231)( 93,235)( 94,234)( 95,233)( 96,227)
( 97,226)( 98,230)( 99,229)(100,228)(101,237)(102,236)(103,240)(104,239)
(105,238)(106,217)(107,216)(108,220)(109,219)(110,218)(111,212)(112,211)
(113,215)(114,214)(115,213)(116,222)(117,221)(118,225)(119,224)(120,223);;
s2 := ( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)
( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 91,106)
( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)
(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(121,151)(122,152)
(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)
(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)
(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)
(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)(184,214)
(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)
(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)
(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)
(209,239)(210,240);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(240)!(  2,  5)(  3,  4)(  6, 11)(  7, 15)(  8, 14)(  9, 13)( 10, 12)
( 17, 20)( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 32, 35)
( 33, 34)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 47, 50)( 48, 49)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 62, 65)( 63, 64)( 66, 71)
( 67, 75)( 68, 74)( 69, 73)( 70, 72)( 77, 80)( 78, 79)( 81, 86)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 92, 95)( 93, 94)( 96,101)( 97,105)( 98,104)
( 99,103)(100,102)(107,110)(108,109)(111,116)(112,120)(113,119)(114,118)
(115,117)(121,181)(122,185)(123,184)(124,183)(125,182)(126,191)(127,195)
(128,194)(129,193)(130,192)(131,186)(132,190)(133,189)(134,188)(135,187)
(136,196)(137,200)(138,199)(139,198)(140,197)(141,206)(142,210)(143,209)
(144,208)(145,207)(146,201)(147,205)(148,204)(149,203)(150,202)(151,211)
(152,215)(153,214)(154,213)(155,212)(156,221)(157,225)(158,224)(159,223)
(160,222)(161,216)(162,220)(163,219)(164,218)(165,217)(166,226)(167,230)
(168,229)(169,228)(170,227)(171,236)(172,240)(173,239)(174,238)(175,237)
(176,231)(177,235)(178,234)(179,233)(180,232);
s1 := Sym(240)!(  1,127)(  2,126)(  3,130)(  4,129)(  5,128)(  6,122)(  7,121)
(  8,125)(  9,124)( 10,123)( 11,132)( 12,131)( 13,135)( 14,134)( 15,133)
( 16,142)( 17,141)( 18,145)( 19,144)( 20,143)( 21,137)( 22,136)( 23,140)
( 24,139)( 25,138)( 26,147)( 27,146)( 28,150)( 29,149)( 30,148)( 31,172)
( 32,171)( 33,175)( 34,174)( 35,173)( 36,167)( 37,166)( 38,170)( 39,169)
( 40,168)( 41,177)( 42,176)( 43,180)( 44,179)( 45,178)( 46,157)( 47,156)
( 48,160)( 49,159)( 50,158)( 51,152)( 52,151)( 53,155)( 54,154)( 55,153)
( 56,162)( 57,161)( 58,165)( 59,164)( 60,163)( 61,187)( 62,186)( 63,190)
( 64,189)( 65,188)( 66,182)( 67,181)( 68,185)( 69,184)( 70,183)( 71,192)
( 72,191)( 73,195)( 74,194)( 75,193)( 76,202)( 77,201)( 78,205)( 79,204)
( 80,203)( 81,197)( 82,196)( 83,200)( 84,199)( 85,198)( 86,207)( 87,206)
( 88,210)( 89,209)( 90,208)( 91,232)( 92,231)( 93,235)( 94,234)( 95,233)
( 96,227)( 97,226)( 98,230)( 99,229)(100,228)(101,237)(102,236)(103,240)
(104,239)(105,238)(106,217)(107,216)(108,220)(109,219)(110,218)(111,212)
(112,211)(113,215)(114,214)(115,213)(116,222)(117,221)(118,225)(119,224)
(120,223);
s2 := Sym(240)!( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)
( 38, 53)( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)
( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)
( 99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(121,151)
(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)
(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)
(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)
(146,176)(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)
(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)
(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)
(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)
(208,238)(209,239)(210,240);
poly := sub<Sym(240)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope