Questions?
See the FAQ
or other info.

Polytope of Type {24,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,4}*960b
if this polytope has a name.
Group : SmallGroup(960,5719)
Rank : 3
Schlafli Type : {24,4}
Number of vertices, edges, etc : 120, 240, 20
Order of s0s1s2 : 20
Order of s0s1s2s1 : 3
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {24,4,2} of size 1920
Vertex Figure Of :
   {2,24,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4}*480b
   4-fold quotients : {6,4}*240b
   8-fold quotients : {6,4}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {24,4}*1920c
Permutation Representation (GAP) :
s0 := ( 1,12)( 2,10)( 3,15)( 4,37)( 5,44)( 6,20)( 7,17)( 8,48)( 9,29)(11,21)
(13,28)(14,40)(16,41)(18,46)(19,32)(22,26)(23,25)(24,31)(27,39)(30,45)(33,38)
(34,47)(35,36)(42,43);;
s1 := ( 1, 3)( 2, 7)( 4,44)( 5,39)( 6,41)( 8,14)( 9,47)(10,31)(11,25)(12,27)
(13,48)(15,45)(16,23)(17,26)(18,38)(19,29)(20,35)(21,34)(22,33)(24,40)(28,36)
(30,32)(37,43)(42,46);;
s2 := ( 1,47)( 2,32)( 3,31)( 4, 6)( 5,44)( 7,17)( 8,26)( 9,29)(10,19)(11,28)
(12,34)(13,21)(14,30)(15,24)(16,46)(18,41)(20,37)(22,48)(23,42)(25,43)(27,33)
(35,36)(38,39)(40,45);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(48)!( 1,12)( 2,10)( 3,15)( 4,37)( 5,44)( 6,20)( 7,17)( 8,48)( 9,29)
(11,21)(13,28)(14,40)(16,41)(18,46)(19,32)(22,26)(23,25)(24,31)(27,39)(30,45)
(33,38)(34,47)(35,36)(42,43);
s1 := Sym(48)!( 1, 3)( 2, 7)( 4,44)( 5,39)( 6,41)( 8,14)( 9,47)(10,31)(11,25)
(12,27)(13,48)(15,45)(16,23)(17,26)(18,38)(19,29)(20,35)(21,34)(22,33)(24,40)
(28,36)(30,32)(37,43)(42,46);
s2 := Sym(48)!( 1,47)( 2,32)( 3,31)( 4, 6)( 5,44)( 7,17)( 8,26)( 9,29)(10,19)
(11,28)(12,34)(13,21)(14,30)(15,24)(16,46)(18,41)(20,37)(22,48)(23,42)(25,43)
(27,33)(35,36)(38,39)(40,45);
poly := sub<Sym(48)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope