Questions?
See the FAQ
or other info.

Polytope of Type {30,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,8}*960a
if this polytope has a name.
Group : SmallGroup(960,6311)
Rank : 3
Schlafli Type : {30,8}
Number of vertices, edges, etc : 60, 240, 16
Order of s0s1s2 : 15
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {30,8,2} of size 1920
Vertex Figure Of :
   {2,30,8} of size 1920
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {30,4}*240c
   5-fold quotients : {6,8}*192a
   8-fold quotients : {15,4}*120
   20-fold quotients : {6,4}*48b
   40-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {60,8}*1920c, {60,8}*1920d, {30,8}*1920d
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,10)( 6, 9)( 7,11)( 8,12)(15,16)(17,65)(18,66)(19,68)(20,67)
(21,74)(22,73)(23,75)(24,76)(25,70)(26,69)(27,71)(28,72)(29,77)(30,78)(31,80)
(32,79)(33,49)(34,50)(35,52)(36,51)(37,58)(38,57)(39,59)(40,60)(41,54)(42,53)
(43,55)(44,56)(45,61)(46,62)(47,64)(48,63);;
s1 := ( 1,17)( 2,19)( 3,18)( 4,20)( 5,24)( 6,22)( 7,23)( 8,21)( 9,32)(10,30)
(11,31)(12,29)(13,28)(14,26)(15,27)(16,25)(33,65)(34,67)(35,66)(36,68)(37,72)
(38,70)(39,71)(40,69)(41,80)(42,78)(43,79)(44,77)(45,76)(46,74)(47,75)(48,73)
(50,51)(53,56)(57,64)(58,62)(59,63)(60,61);;
s2 := ( 1,13)( 2,14)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,11)( 8,12)(17,29)(18,30)
(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)(37,41)
(38,42)(39,43)(40,44)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)
(65,77)(66,78)(67,79)(68,80)(69,73)(70,74)(71,75)(72,76);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!( 3, 4)( 5,10)( 6, 9)( 7,11)( 8,12)(15,16)(17,65)(18,66)(19,68)
(20,67)(21,74)(22,73)(23,75)(24,76)(25,70)(26,69)(27,71)(28,72)(29,77)(30,78)
(31,80)(32,79)(33,49)(34,50)(35,52)(36,51)(37,58)(38,57)(39,59)(40,60)(41,54)
(42,53)(43,55)(44,56)(45,61)(46,62)(47,64)(48,63);
s1 := Sym(80)!( 1,17)( 2,19)( 3,18)( 4,20)( 5,24)( 6,22)( 7,23)( 8,21)( 9,32)
(10,30)(11,31)(12,29)(13,28)(14,26)(15,27)(16,25)(33,65)(34,67)(35,66)(36,68)
(37,72)(38,70)(39,71)(40,69)(41,80)(42,78)(43,79)(44,77)(45,76)(46,74)(47,75)
(48,73)(50,51)(53,56)(57,64)(58,62)(59,63)(60,61);
s2 := Sym(80)!( 1,13)( 2,14)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,11)( 8,12)(17,29)
(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,45)(34,46)(35,47)(36,48)
(37,41)(38,42)(39,43)(40,44)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)
(56,60)(65,77)(66,78)(67,79)(68,80)(69,73)(70,74)(71,75)(72,76);
poly := sub<Sym(80)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope