Questions?
See the FAQ
or other info.

Polytope of Type {12,4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4,10}*960
Also Known As : {{12,4|2},{4,10|2}}. if this polytope has another name.
Group : SmallGroup(960,7400)
Rank : 4
Schlafli Type : {12,4,10}
Number of vertices, edges, etc : 12, 24, 20, 10
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,4,10,2} of size 1920
Vertex Figure Of :
   {2,12,4,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,2,10}*480, {6,4,10}*480
   3-fold quotients : {4,4,10}*320
   4-fold quotients : {12,2,5}*240, {6,2,10}*240
   5-fold quotients : {12,4,2}*192a
   6-fold quotients : {2,4,10}*160, {4,2,10}*160
   8-fold quotients : {3,2,10}*120, {6,2,5}*120
   10-fold quotients : {12,2,2}*96, {6,4,2}*96a
   12-fold quotients : {4,2,5}*80, {2,2,10}*80
   15-fold quotients : {4,4,2}*64
   16-fold quotients : {3,2,5}*60
   20-fold quotients : {6,2,2}*48
   24-fold quotients : {2,2,5}*40
   30-fold quotients : {2,4,2}*32, {4,2,2}*32
   40-fold quotients : {3,2,2}*24
   60-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,4,20}*1920, {12,8,10}*1920a, {24,4,10}*1920a, {12,8,10}*1920b, {24,4,10}*1920b, {12,4,10}*1920a
Permutation Representation (GAP) :
s0 := (  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 51, 56)
( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 61, 91)( 62, 92)( 63, 93)( 64, 94)
( 65, 95)( 66,101)( 67,102)( 68,103)( 69,104)( 70,105)( 71, 96)( 72, 97)
( 73, 98)( 74, 99)( 75,100)( 76,106)( 77,107)( 78,108)( 79,109)( 80,110)
( 81,116)( 82,117)( 83,118)( 84,119)( 85,120)( 86,111)( 87,112)( 88,113)
( 89,114)( 90,115);;
s1 := (  1, 66)(  2, 67)(  3, 68)(  4, 69)(  5, 70)(  6, 61)(  7, 62)(  8, 63)
(  9, 64)( 10, 65)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)( 16, 81)
( 17, 82)( 18, 83)( 19, 84)( 20, 85)( 21, 76)( 22, 77)( 23, 78)( 24, 79)
( 25, 80)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31, 96)( 32, 97)
( 33, 98)( 34, 99)( 35,100)( 36, 91)( 37, 92)( 38, 93)( 39, 94)( 40, 95)
( 41,101)( 42,102)( 43,103)( 44,104)( 45,105)( 46,111)( 47,112)( 48,113)
( 49,114)( 50,115)( 51,106)( 52,107)( 53,108)( 54,109)( 55,110)( 56,116)
( 57,117)( 58,118)( 59,119)( 60,120);;
s2 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 61, 76)( 62, 80)( 63, 79)( 64, 78)( 65, 77)( 66, 81)( 67, 85)( 68, 84)
( 69, 83)( 70, 82)( 71, 86)( 72, 90)( 73, 89)( 74, 88)( 75, 87)( 91,106)
( 92,110)( 93,109)( 94,108)( 95,107)( 96,111)( 97,115)( 98,114)( 99,113)
(100,112)(101,116)(102,120)(103,119)(104,118)(105,117);;
s3 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)( 78, 80)
( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)( 98,100)
(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)(118,120);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(120)!(  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)
( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 61, 91)( 62, 92)( 63, 93)
( 64, 94)( 65, 95)( 66,101)( 67,102)( 68,103)( 69,104)( 70,105)( 71, 96)
( 72, 97)( 73, 98)( 74, 99)( 75,100)( 76,106)( 77,107)( 78,108)( 79,109)
( 80,110)( 81,116)( 82,117)( 83,118)( 84,119)( 85,120)( 86,111)( 87,112)
( 88,113)( 89,114)( 90,115);
s1 := Sym(120)!(  1, 66)(  2, 67)(  3, 68)(  4, 69)(  5, 70)(  6, 61)(  7, 62)
(  8, 63)(  9, 64)( 10, 65)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)
( 16, 81)( 17, 82)( 18, 83)( 19, 84)( 20, 85)( 21, 76)( 22, 77)( 23, 78)
( 24, 79)( 25, 80)( 26, 86)( 27, 87)( 28, 88)( 29, 89)( 30, 90)( 31, 96)
( 32, 97)( 33, 98)( 34, 99)( 35,100)( 36, 91)( 37, 92)( 38, 93)( 39, 94)
( 40, 95)( 41,101)( 42,102)( 43,103)( 44,104)( 45,105)( 46,111)( 47,112)
( 48,113)( 49,114)( 50,115)( 51,106)( 52,107)( 53,108)( 54,109)( 55,110)
( 56,116)( 57,117)( 58,118)( 59,119)( 60,120);
s2 := Sym(120)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 61, 76)( 62, 80)( 63, 79)( 64, 78)( 65, 77)( 66, 81)( 67, 85)
( 68, 84)( 69, 83)( 70, 82)( 71, 86)( 72, 90)( 73, 89)( 74, 88)( 75, 87)
( 91,106)( 92,110)( 93,109)( 94,108)( 95,107)( 96,111)( 97,115)( 98,114)
( 99,113)(100,112)(101,116)(102,120)(103,119)(104,118)(105,117);
s3 := Sym(120)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)
( 78, 80)( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)
( 98,100)(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)
(118,120);
poly := sub<Sym(120)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope