Questions?
See the FAQ
or other info.

Polytope of Type {24,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,10,2}*960
if this polytope has a name.
Group : SmallGroup(960,8150)
Rank : 4
Schlafli Type : {24,10,2}
Number of vertices, edges, etc : 24, 120, 10, 2
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {24,10,2,2} of size 1920
Vertex Figure Of :
   {2,24,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,10,2}*480
   3-fold quotients : {8,10,2}*320
   4-fold quotients : {6,10,2}*240
   5-fold quotients : {24,2,2}*192
   6-fold quotients : {4,10,2}*160
   10-fold quotients : {12,2,2}*96
   12-fold quotients : {2,10,2}*80
   15-fold quotients : {8,2,2}*64
   20-fold quotients : {6,2,2}*48
   24-fold quotients : {2,5,2}*40
   30-fold quotients : {4,2,2}*32
   40-fold quotients : {3,2,2}*24
   60-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {24,20,2}*1920a, {24,10,4}*1920, {48,10,2}*1920
Permutation Representation (GAP) :
s0 := (  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 56)
( 37, 57)( 38, 58)( 39, 59)( 40, 60)( 41, 51)( 42, 52)( 43, 53)( 44, 54)
( 45, 55)( 61, 91)( 62, 92)( 63, 93)( 64, 94)( 65, 95)( 66,101)( 67,102)
( 68,103)( 69,104)( 70,105)( 71, 96)( 72, 97)( 73, 98)( 74, 99)( 75,100)
( 76,106)( 77,107)( 78,108)( 79,109)( 80,110)( 81,116)( 82,117)( 83,118)
( 84,119)( 85,120)( 86,111)( 87,112)( 88,113)( 89,114)( 90,115);;
s1 := (  1, 66)(  2, 70)(  3, 69)(  4, 68)(  5, 67)(  6, 61)(  7, 65)(  8, 64)
(  9, 63)( 10, 62)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)( 16, 81)
( 17, 85)( 18, 84)( 19, 83)( 20, 82)( 21, 76)( 22, 80)( 23, 79)( 24, 78)
( 25, 77)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,111)( 32,115)
( 33,114)( 34,113)( 35,112)( 36,106)( 37,110)( 38,109)( 39,108)( 40,107)
( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 96)( 47,100)( 48, 99)
( 49, 98)( 50, 97)( 51, 91)( 52, 95)( 53, 94)( 54, 93)( 55, 92)( 56,101)
( 57,105)( 58,104)( 59,103)( 60,102);;
s2 := (  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)( 18, 20)
( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)( 38, 40)
( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)( 58, 60)
( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)( 78, 80)
( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)( 98,100)
(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)(118,120);;
s3 := (121,122);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!(  6, 11)(  7, 12)(  8, 13)(  9, 14)( 10, 15)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)
( 36, 56)( 37, 57)( 38, 58)( 39, 59)( 40, 60)( 41, 51)( 42, 52)( 43, 53)
( 44, 54)( 45, 55)( 61, 91)( 62, 92)( 63, 93)( 64, 94)( 65, 95)( 66,101)
( 67,102)( 68,103)( 69,104)( 70,105)( 71, 96)( 72, 97)( 73, 98)( 74, 99)
( 75,100)( 76,106)( 77,107)( 78,108)( 79,109)( 80,110)( 81,116)( 82,117)
( 83,118)( 84,119)( 85,120)( 86,111)( 87,112)( 88,113)( 89,114)( 90,115);
s1 := Sym(122)!(  1, 66)(  2, 70)(  3, 69)(  4, 68)(  5, 67)(  6, 61)(  7, 65)
(  8, 64)(  9, 63)( 10, 62)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)
( 16, 81)( 17, 85)( 18, 84)( 19, 83)( 20, 82)( 21, 76)( 22, 80)( 23, 79)
( 24, 78)( 25, 77)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,111)
( 32,115)( 33,114)( 34,113)( 35,112)( 36,106)( 37,110)( 38,109)( 39,108)
( 40,107)( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 96)( 47,100)
( 48, 99)( 49, 98)( 50, 97)( 51, 91)( 52, 95)( 53, 94)( 54, 93)( 55, 92)
( 56,101)( 57,105)( 58,104)( 59,103)( 60,102);
s2 := Sym(122)!(  1,  2)(  3,  5)(  6,  7)(  8, 10)( 11, 12)( 13, 15)( 16, 17)
( 18, 20)( 21, 22)( 23, 25)( 26, 27)( 28, 30)( 31, 32)( 33, 35)( 36, 37)
( 38, 40)( 41, 42)( 43, 45)( 46, 47)( 48, 50)( 51, 52)( 53, 55)( 56, 57)
( 58, 60)( 61, 62)( 63, 65)( 66, 67)( 68, 70)( 71, 72)( 73, 75)( 76, 77)
( 78, 80)( 81, 82)( 83, 85)( 86, 87)( 88, 90)( 91, 92)( 93, 95)( 96, 97)
( 98,100)(101,102)(103,105)(106,107)(108,110)(111,112)(113,115)(116,117)
(118,120);
s3 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope