Questions?
See the FAQ
or other info.

Polytope of Type {2,40,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,40,2,3}*960
if this polytope has a name.
Group : SmallGroup(960,8160)
Rank : 5
Schlafli Type : {2,40,2,3}
Number of vertices, edges, etc : 2, 40, 40, 3, 3
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,40,2,3,2} of size 1920
Vertex Figure Of :
   {2,2,40,2,3} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,20,2,3}*480
   4-fold quotients : {2,10,2,3}*240
   5-fold quotients : {2,8,2,3}*192
   8-fold quotients : {2,5,2,3}*120
   10-fold quotients : {2,4,2,3}*96
   20-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,40,2,3}*1920a, {2,80,2,3}*1920, {2,40,2,6}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8,11)( 9,13)(10,12)(14,15)(16,21)(17,23)(18,22)(19,25)
(20,24)(27,32)(28,31)(29,34)(30,33)(35,36)(37,40)(38,39)(41,42);;
s2 := ( 3, 9)( 4, 6)( 5,17)( 7,19)( 8,12)(10,14)(11,27)(13,29)(15,20)(16,22)
(18,24)(21,35)(23,37)(25,30)(26,31)(28,33)(32,41)(34,38)(36,39)(40,42);;
s3 := (44,45);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(45)!(1,2);
s1 := Sym(45)!( 4, 5)( 6, 7)( 8,11)( 9,13)(10,12)(14,15)(16,21)(17,23)(18,22)
(19,25)(20,24)(27,32)(28,31)(29,34)(30,33)(35,36)(37,40)(38,39)(41,42);
s2 := Sym(45)!( 3, 9)( 4, 6)( 5,17)( 7,19)( 8,12)(10,14)(11,27)(13,29)(15,20)
(16,22)(18,24)(21,35)(23,37)(25,30)(26,31)(28,33)(32,41)(34,38)(36,39)(40,42);
s3 := Sym(45)!(44,45);
s4 := Sym(45)!(43,44);
poly := sub<Sym(45)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope