Questions?
See the FAQ
or other info.

Polytope of Type {6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3}*972
Also Known As : {6,3}(9,0), {6,3}18if this polytope has another name.
Group : SmallGroup(972,115)
Rank : 3
Schlafli Type : {6,3}
Number of vertices, edges, etc : 162, 243, 81
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,3,2} of size 1944
Vertex Figure Of :
   {2,6,3} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3}*324
   9-fold quotients : {6,3}*108
   27-fold quotients : {6,3}*36
   81-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,6}*1944c
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 8)( 5, 7)( 6, 9)(10,19)(11,21)(12,20)(13,27)(14,26)(15,25)
(16,22)(17,24)(18,23);;
s1 := ( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18);;
s2 := (10,27)(11,25)(12,26)(13,19)(14,20)(15,21)(16,24)(17,22)(18,23);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(27)!( 2, 3)( 4, 8)( 5, 7)( 6, 9)(10,19)(11,21)(12,20)(13,27)(14,26)
(15,25)(16,22)(17,24)(18,23);
s1 := Sym(27)!( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18);
s2 := Sym(27)!(10,27)(11,25)(12,26)(13,19)(14,20)(15,21)(16,24)(17,22)(18,23);
poly := sub<Sym(27)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >; 
 
References : None.
to this polytope