Questions?
See the FAQ
or other info.

Polytopes of Type {12,12}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 111 polytopes of this type in this atlas. They are :
  1. {12,12}*288a (SmallGroup(288,571))
  2. {12,12}*288b (SmallGroup(288,571))
  3. {12,12}*288c (SmallGroup(288,571))
  4. {12,12}*384a (SmallGroup(384,17873))
  5. {12,12}*384b (SmallGroup(384,17922))
  6. {12,12}*384c (SmallGroup(384,17986))
  7. {12,12}*384d (SmallGroup(384,17986))
  8. {12,12}*576a (SmallGroup(576,2292))
  9. {12,12}*576b (SmallGroup(576,2292))
  10. {12,12}*576c (SmallGroup(576,2292))
  11. {12,12}*576d (SmallGroup(576,8312))
  12. {12,12}*576e (SmallGroup(576,8312))
  13. {12,12}*576f (SmallGroup(576,8312))
  14. {12,12}*576g (SmallGroup(576,8312))
  15. {12,12}*576h (SmallGroup(576,8313))
  16. {12,12}*576i (SmallGroup(576,8313))
  17. {12,12}*576j (SmallGroup(576,8355))
  18. {12,12}*576k (SmallGroup(576,8355))
  19. {12,12}*576l (SmallGroup(576,8653))
  20. {12,12}*648 (SmallGroup(648,547))
  21. {12,12}*768a (SmallGroup(768,1087715))
  22. {12,12}*768b (SmallGroup(768,1087743))
  23. {12,12}*768c (SmallGroup(768,1087745))
  24. {12,12}*864a (SmallGroup(864,1130))
  25. {12,12}*864b (SmallGroup(864,1130))
  26. {12,12}*864c (SmallGroup(864,1130))
  27. {12,12}*864d (SmallGroup(864,2282))
  28. {12,12}*864e (SmallGroup(864,2282))
  29. {12,12}*864f (SmallGroup(864,2282))
  30. {12,12}*864g (SmallGroup(864,2282))
  31. {12,12}*864h (SmallGroup(864,2919))
  32. {12,12}*864i (SmallGroup(864,4080))
  33. {12,12}*864j (SmallGroup(864,4080))
  34. {12,12}*864k (SmallGroup(864,4321))
  35. {12,12}*864l (SmallGroup(864,4321))
  36. {12,12}*864m (SmallGroup(864,4669))
  37. {12,12}*864n (SmallGroup(864,4669))
  38. {12,12}*864o (SmallGroup(864,4669))
  39. {12,12}*1152a (SmallGroup(1152,32543))
  40. {12,12}*1152b (SmallGroup(1152,32543))
  41. {12,12}*1152c (SmallGroup(1152,32550))
  42. {12,12}*1152d (SmallGroup(1152,155672))
  43. {12,12}*1152e (SmallGroup(1152,155672))
  44. {12,12}*1152f (SmallGroup(1152,155677))
  45. {12,12}*1152g (SmallGroup(1152,155677))
  46. {12,12}*1152h (SmallGroup(1152,155865))
  47. {12,12}*1152i (SmallGroup(1152,155865))
  48. {12,12}*1152j (SmallGroup(1152,156063))
  49. {12,12}*1152k (SmallGroup(1152,156063))
  50. {12,12}*1152l (SmallGroup(1152,156063))
  51. {12,12}*1152m (SmallGroup(1152,156063))
  52. {12,12}*1152n (SmallGroup(1152,156063))
  53. {12,12}*1152o (SmallGroup(1152,156063))
  54. {12,12}*1152p (SmallGroup(1152,156387))
  55. {12,12}*1152q (SmallGroup(1152,156387))
  56. {12,12}*1152r (SmallGroup(1152,156484))
  57. {12,12}*1152s (SmallGroup(1152,156484))
  58. {12,12}*1152t (SmallGroup(1152,157851))
  59. {12,12}*1296a (SmallGroup(1296,2909))
  60. {12,12}*1296b (SmallGroup(1296,2909))
  61. {12,12}*1296c (SmallGroup(1296,2909))
  62. {12,12}*1296d (SmallGroup(1296,2909))
  63. {12,12}*1296e (SmallGroup(1296,2977))
  64. {12,12}*1296f (SmallGroup(1296,3528))
  65. {12,12}*1296g (SmallGroup(1296,3529))
  66. {12,12}*1296h (SmallGroup(1296,3529))
  67. {12,12}*1320a (SmallGroup(1320,133))
  68. {12,12}*1320b (SmallGroup(1320,133))
  69. {12,12}*1440a (SmallGroup(1440,4602))
  70. {12,12}*1440b (SmallGroup(1440,4602))
  71. {12,12}*1440c (SmallGroup(1440,4602))
  72. {12,12}*1440d (SmallGroup(1440,4602))
  73. {12,12}*1728a (SmallGroup(1728,3538))
  74. {12,12}*1728b (SmallGroup(1728,3538))
  75. {12,12}*1728c (SmallGroup(1728,3538))
  76. {12,12}*1728d (SmallGroup(1728,12630))
  77. {12,12}*1728e (SmallGroup(1728,12630))
  78. {12,12}*1728f (SmallGroup(1728,12630))
  79. {12,12}*1728g (SmallGroup(1728,12630))
  80. {12,12}*1728h (SmallGroup(1728,23054))
  81. {12,12}*1728i (SmallGroup(1728,30242))
  82. {12,12}*1728j (SmallGroup(1728,30242))
  83. {12,12}*1728k (SmallGroup(1728,30242))
  84. {12,12}*1728l (SmallGroup(1728,30242))
  85. {12,12}*1728m (SmallGroup(1728,30243))
  86. {12,12}*1728n (SmallGroup(1728,30243))
  87. {12,12}*1728o (SmallGroup(1728,30326))
  88. {12,12}*1728p (SmallGroup(1728,30326))
  89. {12,12}*1728q (SmallGroup(1728,31633))
  90. {12,12}*1728r (SmallGroup(1728,31633))
  91. {12,12}*1728s (SmallGroup(1728,33548))
  92. {12,12}*1728t (SmallGroup(1728,33548))
  93. {12,12}*1728u (SmallGroup(1728,46099))
  94. {12,12}*1728v (SmallGroup(1728,46344))
  95. {12,12}*1728w (SmallGroup(1728,46344))
  96. {12,12}*1728x (SmallGroup(1728,46356))
  97. {12,12}*1728y (SmallGroup(1728,46356))
  98. {12,12}*1728z (SmallGroup(1728,47870))
  99. {12,12}*1728aa (SmallGroup(1728,47870))
  100. {12,12}*1728ab (SmallGroup(1728,47870))
  101. {12,12}*1920a (SmallGroup(1920,240507))
  102. {12,12}*1920b (SmallGroup(1920,240800))
  103. {12,12}*1920c (SmallGroup(1920,240806))
  104. {12,12}*1920d (SmallGroup(1920,240806))
  105. {12,12}*1920e (SmallGroup(1920,240996))
  106. {12,12}*1944a (SmallGroup(1944,805))
  107. {12,12}*1944b (SmallGroup(1944,805))
  108. {12,12}*1944c (SmallGroup(1944,806))
  109. {12,12}*1944d (SmallGroup(1944,2324))
  110. {12,12}*1944e (SmallGroup(1944,2325))
  111. {12,12}*1944f (SmallGroup(1944,2325))