Questions?
See the FAQ
or other info.

Polytopes of Type {12,24}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 62 polytopes of this type in this atlas. They are :
  1. {12,24}*576a (SmallGroup(576,2279))
  2. {12,24}*576b (SmallGroup(576,2480))
  3. {12,24}*576c (SmallGroup(576,2829))
  4. {12,24}*576d (SmallGroup(576,2829))
  5. {12,24}*576e (SmallGroup(576,2897))
  6. {12,24}*576f (SmallGroup(576,2897))
  7. {12,24}*768a (SmallGroup(768,1086745))
  8. {12,24}*768b (SmallGroup(768,1086909))
  9. {12,24}*768c (SmallGroup(768,1087755))
  10. {12,24}*768d (SmallGroup(768,1087779))
  11. {12,24}*768e (SmallGroup(768,1087796))
  12. {12,24}*768f (SmallGroup(768,1087808))
  13. {12,24}*1152a (SmallGroup(1152,12010))
  14. {12,24}*1152b (SmallGroup(1152,12010))
  15. {12,24}*1152c (SmallGroup(1152,12014))
  16. {12,24}*1152d (SmallGroup(1152,32543))
  17. {12,24}*1152e (SmallGroup(1152,32543))
  18. {12,24}*1152f (SmallGroup(1152,32550))
  19. {12,24}*1152g (SmallGroup(1152,154485))
  20. {12,24}*1152h (SmallGroup(1152,154485))
  21. {12,24}*1152i (SmallGroup(1152,155629))
  22. {12,24}*1152j (SmallGroup(1152,155629))
  23. {12,24}*1152k (SmallGroup(1152,155672))
  24. {12,24}*1152l (SmallGroup(1152,155672))
  25. {12,24}*1152m (SmallGroup(1152,155677))
  26. {12,24}*1152n (SmallGroup(1152,155788))
  27. {12,24}*1152o (SmallGroup(1152,155800))
  28. {12,24}*1152p (SmallGroup(1152,155800))
  29. {12,24}*1152q (SmallGroup(1152,155801))
  30. {12,24}*1152r (SmallGroup(1152,155801))
  31. {12,24}*1152s (SmallGroup(1152,155849))
  32. {12,24}*1152t (SmallGroup(1152,155865))
  33. {12,24}*1152u (SmallGroup(1152,156202))
  34. {12,24}*1152v (SmallGroup(1152,156387))
  35. {12,24}*1152w (SmallGroup(1152,156484))
  36. {12,24}*1152x (SmallGroup(1152,156509))
  37. {12,24}*1152y (SmallGroup(1152,157458))
  38. {12,24}*1152z (SmallGroup(1152,157458))
  39. {12,24}*1728a (SmallGroup(1728,3511))
  40. {12,24}*1728b (SmallGroup(1728,4110))
  41. {12,24}*1728c (SmallGroup(1728,5113))
  42. {12,24}*1728d (SmallGroup(1728,5113))
  43. {12,24}*1728e (SmallGroup(1728,5273))
  44. {12,24}*1728f (SmallGroup(1728,5273))
  45. {12,24}*1728g (SmallGroup(1728,12653))
  46. {12,24}*1728h (SmallGroup(1728,12653))
  47. {12,24}*1728i (SmallGroup(1728,12703))
  48. {12,24}*1728j (SmallGroup(1728,12703))
  49. {12,24}*1728k (SmallGroup(1728,12713))
  50. {12,24}*1728l (SmallGroup(1728,12713))
  51. {12,24}*1728m (SmallGroup(1728,12762))
  52. {12,24}*1728n (SmallGroup(1728,12762))
  53. {12,24}*1728o (SmallGroup(1728,21860))
  54. {12,24}*1728p (SmallGroup(1728,21980))
  55. {12,24}*1728q (SmallGroup(1728,31258))
  56. {12,24}*1728r (SmallGroup(1728,31294))
  57. {12,24}*1728s (SmallGroup(1728,31593))
  58. {12,24}*1728t (SmallGroup(1728,31623))
  59. {12,24}*1728u (SmallGroup(1728,33554))
  60. {12,24}*1728v (SmallGroup(1728,33596))
  61. {12,24}*1728w (SmallGroup(1728,33616))
  62. {12,24}*1728x (SmallGroup(1728,33667))