Questions?
See the FAQ
or other info.

Polytopes of Type {12,8}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 61 polytopes of this type in this atlas. They are :
  1. {12,8}*192a (SmallGroup(192,332))
  2. {12,8}*192b (SmallGroup(192,381))
  3. {12,8}*384a (SmallGroup(384,860))
  4. {12,8}*384b (SmallGroup(384,1722))
  5. {12,8}*384c (SmallGroup(384,5573))
  6. {12,8}*384d (SmallGroup(384,5573))
  7. {12,8}*384e (SmallGroup(384,17922))
  8. {12,8}*384f (SmallGroup(384,17944))
  9. {12,8}*384g (SmallGroup(384,17958))
  10. {12,8}*384h (SmallGroup(384,17986))
  11. {12,8}*576a (SmallGroup(576,5307))
  12. {12,8}*576b (SmallGroup(576,5410))
  13. {12,8}*768a (SmallGroup(768,81598))
  14. {12,8}*768b (SmallGroup(768,90281))
  15. {12,8}*768c (SmallGroup(768,90301))
  16. {12,8}*768d (SmallGroup(768,90303))
  17. {12,8}*768e (SmallGroup(768,1086012))
  18. {12,8}*768f (SmallGroup(768,1086012))
  19. {12,8}*768g (SmallGroup(768,1086012))
  20. {12,8}*768h (SmallGroup(768,1086012))
  21. {12,8}*768i (SmallGroup(768,1086052))
  22. {12,8}*768j (SmallGroup(768,1086052))
  23. {12,8}*768k (SmallGroup(768,1086301))
  24. {12,8}*768l (SmallGroup(768,1086324))
  25. {12,8}*768m (SmallGroup(768,1086335))
  26. {12,8}*768n (SmallGroup(768,1086335))
  27. {12,8}*768o (SmallGroup(768,1086745))
  28. {12,8}*768p (SmallGroup(768,1086857))
  29. {12,8}*768q (SmallGroup(768,1087633))
  30. {12,8}*768r (SmallGroup(768,1087633))
  31. {12,8}*768s (SmallGroup(768,1087715))
  32. {12,8}*768t (SmallGroup(768,1087745))
  33. {12,8}*768u (SmallGroup(768,1087755))
  34. {12,8}*768v (SmallGroup(768,1087795))
  35. {12,8}*768w (SmallGroup(768,1087796))
  36. {12,8}*768x (SmallGroup(768,1088009))
  37. {12,8}*1008 (SmallGroup(1008,881))
  38. {12,8}*1152a (SmallGroup(1152,12018))
  39. {12,8}*1152b (SmallGroup(1152,32552))
  40. {12,8}*1152c (SmallGroup(1152,157849))
  41. {12,8}*1344a (SmallGroup(1344,11289))
  42. {12,8}*1344b (SmallGroup(1344,11289))
  43. {12,8}*1344c (SmallGroup(1344,11295))
  44. {12,8}*1344d (SmallGroup(1344,11295))
  45. {12,8}*1344e (SmallGroup(1344,11295))
  46. {12,8}*1344f (SmallGroup(1344,11295))
  47. {12,8}*1344g (SmallGroup(1344,11295))
  48. {12,8}*1344h (SmallGroup(1344,11295))
  49. {12,8}*1728a (SmallGroup(1728,12653))
  50. {12,8}*1728b (SmallGroup(1728,12703))
  51. {12,8}*1728c (SmallGroup(1728,12713))
  52. {12,8}*1728d (SmallGroup(1728,12762))
  53. {12,8}*1728e (SmallGroup(1728,31258))
  54. {12,8}*1728f (SmallGroup(1728,31294))
  55. {12,8}*1728g (SmallGroup(1728,31593))
  56. {12,8}*1728h (SmallGroup(1728,31623))
  57. {12,8}*1920a (SmallGroup(1920,240798))
  58. {12,8}*1920b (SmallGroup(1920,240800))
  59. {12,8}*1920c (SmallGroup(1920,240838))
  60. {12,8}*1920d (SmallGroup(1920,240844))
  61. {12,8}*1920e (SmallGroup(1920,240996))