Questions?
See the FAQ
or other info.

Polytopes of Type {36,6}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 26 polytopes of this type in this atlas. They are :
  1. {36,6}*432a (SmallGroup(432,291))
  2. {36,6}*432b (SmallGroup(432,291))
  3. {36,6}*432c (SmallGroup(432,521))
  4. {36,6}*648a (SmallGroup(648,546))
  5. {36,6}*648b (SmallGroup(648,548))
  6. {36,6}*648c (SmallGroup(648,548))
  7. {36,6}*864 (SmallGroup(864,3998))
  8. {36,6}*1296a (SmallGroup(1296,812))
  9. {36,6}*1296b (SmallGroup(1296,812))
  10. {36,6}*1296c (SmallGroup(1296,839))
  11. {36,6}*1296d (SmallGroup(1296,840))
  12. {36,6}*1296e (SmallGroup(1296,854))
  13. {36,6}*1296f (SmallGroup(1296,854))
  14. {36,6}*1296g (SmallGroup(1296,868))
  15. {36,6}*1296h (SmallGroup(1296,943))
  16. {36,6}*1296i (SmallGroup(1296,1783))
  17. {36,6}*1296j (SmallGroup(1296,1784))
  18. {36,6}*1296k (SmallGroup(1296,1785))
  19. {36,6}*1296l (SmallGroup(1296,2007))
  20. {36,6}*1296m (SmallGroup(1296,2976))
  21. {36,6}*1296n (SmallGroup(1296,2978))
  22. {36,6}*1296o (SmallGroup(1296,2978))
  23. {36,6}*1728a (SmallGroup(1728,30174))
  24. {36,6}*1728b (SmallGroup(1728,30174))
  25. {36,6}*1728c (SmallGroup(1728,30201))
  26. {36,6}*1944 (SmallGroup(1944,2323))