Questions?
See the FAQ
or other info.

Polytopes of Type {6,12}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 103 polytopes of this type in this atlas. They are :
  1. {6,12}*144a (SmallGroup(144,144))
  2. {6,12}*144b (SmallGroup(144,144))
  3. {6,12}*144c (SmallGroup(144,154))
  4. {6,12}*144d (SmallGroup(144,183))
  5. {6,12}*192a (SmallGroup(192,1472))
  6. {6,12}*192b (SmallGroup(192,1481))
  7. {6,12}*216a (SmallGroup(216,87))
  8. {6,12}*216b (SmallGroup(216,87))
  9. {6,12}*216c (SmallGroup(216,159))
  10. {6,12}*288a (SmallGroup(288,1028))
  11. {6,12}*288b (SmallGroup(288,1028))
  12. {6,12}*384 (SmallGroup(384,17958))
  13. {6,12}*432a (SmallGroup(432,301))
  14. {6,12}*432b (SmallGroup(432,301))
  15. {6,12}*432c (SmallGroup(432,324))
  16. {6,12}*432d (SmallGroup(432,523))
  17. {6,12}*432e (SmallGroup(432,530))
  18. {6,12}*432f (SmallGroup(432,530))
  19. {6,12}*432g (SmallGroup(432,602))
  20. {6,12}*432h (SmallGroup(432,741))
  21. {6,12}*432i (SmallGroup(432,756))
  22. {6,12}*480a (SmallGroup(480,951))
  23. {6,12}*480b (SmallGroup(480,951))
  24. {6,12}*576a (SmallGroup(576,8313))
  25. {6,12}*576b (SmallGroup(576,8313))
  26. {6,12}*576c (SmallGroup(576,8319))
  27. {6,12}*576d (SmallGroup(576,8340))
  28. {6,12}*576e (SmallGroup(576,8355))
  29. {6,12}*576f (SmallGroup(576,8355))
  30. {6,12}*648 (SmallGroup(648,547))
  31. {6,12}*720a (SmallGroup(720,767))
  32. {6,12}*720b (SmallGroup(720,767))
  33. {6,12}*768a (SmallGroup(768,1086052))
  34. {6,12}*768b (SmallGroup(768,1086052))
  35. {6,12}*768c (SmallGroup(768,1086301))
  36. {6,12}*768d (SmallGroup(768,1086320))
  37. {6,12}*768e (SmallGroup(768,1086324))
  38. {6,12}*768f (SmallGroup(768,1087581))
  39. {6,12}*768g (SmallGroup(768,1087795))
  40. {6,12}*768h (SmallGroup(768,1088009))
  41. {6,12}*768i (SmallGroup(768,1088551))
  42. {6,12}*768j (SmallGroup(768,1088556))
  43. {6,12}*864a (SmallGroup(864,4000))
  44. {6,12}*864b (SmallGroup(864,4000))
  45. {6,12}*864c (SmallGroup(864,4673))
  46. {6,12}*960a (SmallGroup(960,10877))
  47. {6,12}*960b (SmallGroup(960,10882))
  48. {6,12}*1152a (SmallGroup(1152,155788))
  49. {6,12}*1152b (SmallGroup(1152,155790))
  50. {6,12}*1152c (SmallGroup(1152,155790))
  51. {6,12}*1152d (SmallGroup(1152,155849))
  52. {6,12}*1152e (SmallGroup(1152,156202))
  53. {6,12}*1152f (SmallGroup(1152,156509))
  54. {6,12}*1152g (SmallGroup(1152,157458))
  55. {6,12}*1152h (SmallGroup(1152,157478))
  56. {6,12}*1152i (SmallGroup(1152,157478))
  57. {6,12}*1152j (SmallGroup(1152,157851))
  58. {6,12}*1200a (SmallGroup(1200,513))
  59. {6,12}*1200b (SmallGroup(1200,522))
  60. {6,12}*1296a (SmallGroup(1296,839))
  61. {6,12}*1296b (SmallGroup(1296,840))
  62. {6,12}*1296c (SmallGroup(1296,868))
  63. {6,12}*1296d (SmallGroup(1296,943))
  64. {6,12}*1296e (SmallGroup(1296,1788))
  65. {6,12}*1296f (SmallGroup(1296,1790))
  66. {6,12}*1296g (SmallGroup(1296,2061))
  67. {6,12}*1296h (SmallGroup(1296,2061))
  68. {6,12}*1296i (SmallGroup(1296,2077))
  69. {6,12}*1296j (SmallGroup(1296,2909))
  70. {6,12}*1296k (SmallGroup(1296,2909))
  71. {6,12}*1296l (SmallGroup(1296,2909))
  72. {6,12}*1296m (SmallGroup(1296,2909))
  73. {6,12}*1296n (SmallGroup(1296,2909))
  74. {6,12}*1296o (SmallGroup(1296,2977))
  75. {6,12}*1296p (SmallGroup(1296,3490))
  76. {6,12}*1296q (SmallGroup(1296,3492))
  77. {6,12}*1296r (SmallGroup(1296,3492))
  78. {6,12}*1296s (SmallGroup(1296,3528))
  79. {6,12}*1296t (SmallGroup(1296,3529))
  80. {6,12}*1296u (SmallGroup(1296,3529))
  81. {6,12}*1320a (SmallGroup(1320,133))
  82. {6,12}*1320b (SmallGroup(1320,133))
  83. {6,12}*1344a (SmallGroup(1344,11295))
  84. {6,12}*1344b (SmallGroup(1344,11295))
  85. {6,12}*1440a (SmallGroup(1440,4602))
  86. {6,12}*1440b (SmallGroup(1440,4602))
  87. {6,12}*1440c (SmallGroup(1440,5849))
  88. {6,12}*1440d (SmallGroup(1440,5849))
  89. {6,12}*1728a (SmallGroup(1728,30243))
  90. {6,12}*1728b (SmallGroup(1728,30243))
  91. {6,12}*1728c (SmallGroup(1728,30267))
  92. {6,12}*1728d (SmallGroup(1728,30298))
  93. {6,12}*1728e (SmallGroup(1728,30326))
  94. {6,12}*1728f (SmallGroup(1728,30326))
  95. {6,12}*1728g (SmallGroup(1728,46303))
  96. {6,12}*1728h (SmallGroup(1728,46356))
  97. {6,12}*1728i (SmallGroup(1728,46356))
  98. {6,12}*1728j (SmallGroup(1728,47847))
  99. {6,12}*1920a (SmallGroup(1920,240800))
  100. {6,12}*1920b (SmallGroup(1920,240996))
  101. {6,12}*1944a (SmallGroup(1944,805))
  102. {6,12}*1944b (SmallGroup(1944,805))
  103. {6,12}*1944c (SmallGroup(1944,2324))