Questions?
See the FAQ
or other info.

Polytopes of Type {8,12}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 61 polytopes of this type in this atlas. They are :
  1. {8,12}*192a (SmallGroup(192,332))
  2. {8,12}*192b (SmallGroup(192,381))
  3. {8,12}*384a (SmallGroup(384,860))
  4. {8,12}*384b (SmallGroup(384,1722))
  5. {8,12}*384c (SmallGroup(384,5573))
  6. {8,12}*384d (SmallGroup(384,5573))
  7. {8,12}*384e (SmallGroup(384,17922))
  8. {8,12}*384f (SmallGroup(384,17944))
  9. {8,12}*384g (SmallGroup(384,17958))
  10. {8,12}*384h (SmallGroup(384,17986))
  11. {8,12}*576a (SmallGroup(576,5307))
  12. {8,12}*576b (SmallGroup(576,5410))
  13. {8,12}*768a (SmallGroup(768,81598))
  14. {8,12}*768b (SmallGroup(768,90281))
  15. {8,12}*768c (SmallGroup(768,90301))
  16. {8,12}*768d (SmallGroup(768,90303))
  17. {8,12}*768e (SmallGroup(768,1086012))
  18. {8,12}*768f (SmallGroup(768,1086012))
  19. {8,12}*768g (SmallGroup(768,1086012))
  20. {8,12}*768h (SmallGroup(768,1086012))
  21. {8,12}*768i (SmallGroup(768,1086052))
  22. {8,12}*768j (SmallGroup(768,1086052))
  23. {8,12}*768k (SmallGroup(768,1086301))
  24. {8,12}*768l (SmallGroup(768,1086324))
  25. {8,12}*768m (SmallGroup(768,1086335))
  26. {8,12}*768n (SmallGroup(768,1086335))
  27. {8,12}*768o (SmallGroup(768,1086745))
  28. {8,12}*768p (SmallGroup(768,1086857))
  29. {8,12}*768q (SmallGroup(768,1087633))
  30. {8,12}*768r (SmallGroup(768,1087633))
  31. {8,12}*768s (SmallGroup(768,1087715))
  32. {8,12}*768t (SmallGroup(768,1087745))
  33. {8,12}*768u (SmallGroup(768,1087755))
  34. {8,12}*768v (SmallGroup(768,1087795))
  35. {8,12}*768w (SmallGroup(768,1087796))
  36. {8,12}*768x (SmallGroup(768,1088009))
  37. {8,12}*1008 (SmallGroup(1008,881))
  38. {8,12}*1152a (SmallGroup(1152,12018))
  39. {8,12}*1152b (SmallGroup(1152,32552))
  40. {8,12}*1152c (SmallGroup(1152,157849))
  41. {8,12}*1344a (SmallGroup(1344,11289))
  42. {8,12}*1344b (SmallGroup(1344,11289))
  43. {8,12}*1344c (SmallGroup(1344,11295))
  44. {8,12}*1344d (SmallGroup(1344,11295))
  45. {8,12}*1344e (SmallGroup(1344,11295))
  46. {8,12}*1344f (SmallGroup(1344,11295))
  47. {8,12}*1344g (SmallGroup(1344,11295))
  48. {8,12}*1344h (SmallGroup(1344,11295))
  49. {8,12}*1728a (SmallGroup(1728,12653))
  50. {8,12}*1728b (SmallGroup(1728,12703))
  51. {8,12}*1728c (SmallGroup(1728,12713))
  52. {8,12}*1728d (SmallGroup(1728,12762))
  53. {8,12}*1728e (SmallGroup(1728,31258))
  54. {8,12}*1728f (SmallGroup(1728,31294))
  55. {8,12}*1728g (SmallGroup(1728,31593))
  56. {8,12}*1728h (SmallGroup(1728,31623))
  57. {8,12}*1920a (SmallGroup(1920,240798))
  58. {8,12}*1920b (SmallGroup(1920,240800))
  59. {8,12}*1920c (SmallGroup(1920,240838))
  60. {8,12}*1920d (SmallGroup(1920,240844))
  61. {8,12}*1920e (SmallGroup(1920,240996))