Questions?
See the FAQ
or other info.

Polytopes of Type {8,6}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 66 polytopes of this type in this atlas. They are :
  1. {8,6}*96 (SmallGroup(96,117))
  2. {8,6}*192a (SmallGroup(192,956))
  3. {8,6}*192b (SmallGroup(192,1481))
  4. {8,6}*192c (SmallGroup(192,1485))
  5. {8,6}*288 (SmallGroup(288,873))
  6. {8,6}*336a (SmallGroup(336,208))
  7. {8,6}*336b (SmallGroup(336,208))
  8. {8,6}*384a (SmallGroup(384,5573))
  9. {8,6}*384b (SmallGroup(384,5602))
  10. {8,6}*384c (SmallGroup(384,5602))
  11. {8,6}*384d (SmallGroup(384,17949))
  12. {8,6}*384e (SmallGroup(384,17949))
  13. {8,6}*384f (SmallGroup(384,17958))
  14. {8,6}*384g (SmallGroup(384,18032))
  15. {8,6}*480a (SmallGroup(480,948))
  16. {8,6}*480b (SmallGroup(480,948))
  17. {8,6}*672a (SmallGroup(672,1254))
  18. {8,6}*672b (SmallGroup(672,1254))
  19. {8,6}*672c (SmallGroup(672,1254))
  20. {8,6}*672d (SmallGroup(672,1254))
  21. {8,6}*672e (SmallGroup(672,1254))
  22. {8,6}*672f (SmallGroup(672,1254))
  23. {8,6}*672g (SmallGroup(672,1254))
  24. {8,6}*672h (SmallGroup(672,1254))
  25. {8,6}*672i (SmallGroup(672,1254))
  26. {8,6}*672j (SmallGroup(672,1254))
  27. {8,6}*768a (SmallGroup(768,1086051))
  28. {8,6}*768b (SmallGroup(768,1086052))
  29. {8,6}*768c (SmallGroup(768,1086052))
  30. {8,6}*768d (SmallGroup(768,1086301))
  31. {8,6}*768e (SmallGroup(768,1086320))
  32. {8,6}*768f (SmallGroup(768,1086324))
  33. {8,6}*768g (SmallGroup(768,1086329))
  34. {8,6}*768h (SmallGroup(768,1086333))
  35. {8,6}*768i (SmallGroup(768,1086333))
  36. {8,6}*768j (SmallGroup(768,1086649))
  37. {8,6}*768k (SmallGroup(768,1087795))
  38. {8,6}*768l (SmallGroup(768,1088009))
  39. {8,6}*768m (SmallGroup(768,1088539))
  40. {8,6}*768n (SmallGroup(768,1088551))
  41. {8,6}*864a (SmallGroup(864,2265))
  42. {8,6}*864b (SmallGroup(864,4094))
  43. {8,6}*960a (SmallGroup(960,10869))
  44. {8,6}*960b (SmallGroup(960,10877))
  45. {8,6}*1152a (SmallGroup(1152,157849))
  46. {8,6}*1152b (SmallGroup(1152,157849))
  47. {8,6}*1152c (SmallGroup(1152,157849))
  48. {8,6}*1296 (SmallGroup(1296,3509))
  49. {8,6}*1344a (SmallGroup(1344,11291))
  50. {8,6}*1344b (SmallGroup(1344,11291))
  51. {8,6}*1344c (SmallGroup(1344,11295))
  52. {8,6}*1344d (SmallGroup(1344,11295))
  53. {8,6}*1344e (SmallGroup(1344,11295))
  54. {8,6}*1344f (SmallGroup(1344,11295))
  55. {8,6}*1344g (SmallGroup(1344,11684))
  56. {8,6}*1344h (SmallGroup(1344,11684))
  57. {8,6}*1344i (SmallGroup(1344,11684))
  58. {8,6}*1344j (SmallGroup(1344,11684))
  59. {8,6}*1440a (SmallGroup(1440,4612))
  60. {8,6}*1440b (SmallGroup(1440,4612))
  61. {8,6}*1440c (SmallGroup(1440,5841))
  62. {8,6}*1440d (SmallGroup(1440,5843))
  63. {8,6}*1440e (SmallGroup(1440,5843))
  64. {8,6}*1920a (SmallGroup(1920,240560))
  65. {8,6}*1920b (SmallGroup(1920,240844))
  66. {8,6}*1920c (SmallGroup(1920,240996))