Questions?
See the FAQ
or other info.

Polytopes of Type {8,8}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)

There are 70 polytopes of this type in this atlas. They are :
  1. {8,8}*128a (SmallGroup(128,351))
  2. {8,8}*128b (SmallGroup(128,351))
  3. {8,8}*128c (SmallGroup(128,351))
  4. {8,8}*128d (SmallGroup(128,387))
  5. {8,8}*256a (SmallGroup(256,722))
  6. {8,8}*256b (SmallGroup(256,5078))
  7. {8,8}*256c (SmallGroup(256,5084))
  8. {8,8}*256d (SmallGroup(256,5084))
  9. {8,8}*256e (SmallGroup(256,6665))
  10. {8,8}*256f (SmallGroup(256,6665))
  11. {8,8}*256g (SmallGroup(256,6669))
  12. {8,8}*256h (SmallGroup(256,6669))
  13. {8,8}*336a (SmallGroup(336,208))
  14. {8,8}*336b (SmallGroup(336,208))
  15. {8,8}*512a (SmallGroup(512,32847))
  16. {8,8}*512b (SmallGroup(512,32848))
  17. {8,8}*512c (SmallGroup(512,32850))
  18. {8,8}*512d (SmallGroup(512,58326))
  19. {8,8}*512e (SmallGroup(512,58328))
  20. {8,8}*512f (SmallGroup(512,58328))
  21. {8,8}*512g (SmallGroup(512,58328))
  22. {8,8}*512h (SmallGroup(512,58338))
  23. {8,8}*512i (SmallGroup(512,58338))
  24. {8,8}*512j (SmallGroup(512,58342))
  25. {8,8}*512k (SmallGroup(512,58342))
  26. {8,8}*512l (SmallGroup(512,58342))
  27. {8,8}*512m (SmallGroup(512,58342))
  28. {8,8}*512n (SmallGroup(512,58342))
  29. {8,8}*512o (SmallGroup(512,58342))
  30. {8,8}*512p (SmallGroup(512,58354))
  31. {8,8}*512q (SmallGroup(512,58354))
  32. {8,8}*512r (SmallGroup(512,58358))
  33. {8,8}*512s (SmallGroup(512,58358))
  34. {8,8}*512t (SmallGroup(512,58358))
  35. {8,8}*672a (SmallGroup(672,1254))
  36. {8,8}*672b (SmallGroup(672,1254))
  37. {8,8}*672c (SmallGroup(672,1254))
  38. {8,8}*672d (SmallGroup(672,1254))
  39. {8,8}*672e (SmallGroup(672,1254))
  40. {8,8}*672f (SmallGroup(672,1254))
  41. {8,8}*720 (SmallGroup(720,764))
  42. {8,8}*784a (SmallGroup(784,161))
  43. {8,8}*784b (SmallGroup(784,161))
  44. {8,8}*1152a (SmallGroup(1152,12919))
  45. {8,8}*1152b (SmallGroup(1152,12921))
  46. {8,8}*1152c (SmallGroup(1152,12921))
  47. {8,8}*1152d (SmallGroup(1152,14487))
  48. {8,8}*1152e (SmallGroup(1152,157849))
  49. {8,8}*1152f (SmallGroup(1152,157849))
  50. {8,8}*1296 (SmallGroup(1296,3509))
  51. {8,8}*1344a (SmallGroup(1344,11295))
  52. {8,8}*1344b (SmallGroup(1344,11295))
  53. {8,8}*1344c (SmallGroup(1344,11295))
  54. {8,8}*1344d (SmallGroup(1344,11295))
  55. {8,8}*1344e (SmallGroup(1344,11295))
  56. {8,8}*1344f (SmallGroup(1344,11295))
  57. {8,8}*1344g (SmallGroup(1344,11295))
  58. {8,8}*1344h (SmallGroup(1344,11295))
  59. {8,8}*1344i (SmallGroup(1344,11684))
  60. {8,8}*1344j (SmallGroup(1344,11684))
  61. {8,8}*1440a (SmallGroup(1440,5841))
  62. {8,8}*1440b (SmallGroup(1440,5841))
  63. {8,8}*1440c (SmallGroup(1440,5841))
  64. {8,8}*1440d (SmallGroup(1440,5841))
  65. {8,8}*1440e (SmallGroup(1440,5841))
  66. {8,8}*1440f (SmallGroup(1440,5843))
  67. {8,8}*1440g (SmallGroup(1440,5843))
  68. {8,8}*1440h (SmallGroup(1440,5843))
  69. {8,8}*1568a (SmallGroup(1568,917))
  70. {8,8}*1568b (SmallGroup(1568,917))