Questions?
See the FAQ
or other info.

Polytopes of Type {2,6,6}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 4)

There are 53 polytopes of this type in this atlas. They are :
  1. {2,6,6}*144a (SmallGroup(144,192)) (Universal)
  2. {2,6,6}*144b (SmallGroup(144,192)) (Universal)
  3. {2,6,6}*144c (SmallGroup(144,192)) (Universal)
  4. {2,6,6}*192 (SmallGroup(192,1537)) (Universal)
  5. {2,6,6}*216 (SmallGroup(216,102)) (Universal)
  6. {2,6,6}*240 (SmallGroup(240,189)) (Universal)
  7. {2,6,6}*384a (SmallGroup(384,17948)) (Universal)
  8. {2,6,6}*384b (SmallGroup(384,20070)) (Universal)
  9. {2,6,6}*432a (SmallGroup(432,545)) (Universal)
  10. {2,6,6}*432b (SmallGroup(432,545)) (Universal)
  11. {2,6,6}*432c (SmallGroup(432,545)) (Universal)
  12. {2,6,6}*432d (SmallGroup(432,759)) (Universal)
  13. {2,6,6}*480a (SmallGroup(480,1186)) (Universal)
  14. {2,6,6}*480b (SmallGroup(480,1186)) (Universal)
  15. {2,6,6}*480c (SmallGroup(480,1186)) (Universal)
  16. {2,6,6}*576a (SmallGroup(576,8659)) (Universal)
  17. {2,6,6}*576b (SmallGroup(576,8659)) (Universal)
  18. {2,6,6}*648a (SmallGroup(648,299)) (Universal)
  19. {2,6,6}*648b (SmallGroup(648,299)) (Universal)
  20. {2,6,6}*672 (SmallGroup(672,1254)) (Universal)
  21. {2,6,6}*768a (SmallGroup(768,1088539)) (Universal)
  22. {2,6,6}*768b (SmallGroup(768,1088539)) (Universal)
  23. {2,6,6}*768c (SmallGroup(768,1089093)) (Universal)
  24. {2,6,6}*768d (SmallGroup(768,1089093)) (Universal)
  25. {2,6,6}*768e (SmallGroup(768,1089108)) (Universal)
  26. {2,6,6}*960 (SmallGroup(960,11355)) (Universal)
  27. {2,6,6}*1152a (SmallGroup(1152,157582)) (Universal)
  28. {2,6,6}*1152b (SmallGroup(1152,157582)) (Universal)
  29. {2,6,6}*1152c (SmallGroup(1152,157852)) (Universal)
  30. {2,6,6}*1152d (SmallGroup(1152,157852)) (Universal)
  31. {2,6,6}*1152e (SmallGroup(1152,157852)) (Universal)
  32. {2,6,6}*1200a (SmallGroup(1200,980)) (Universal)
  33. {2,6,6}*1200b (SmallGroup(1200,980)) (Universal)
  34. {2,6,6}*1296a (SmallGroup(1296,1860)) (Universal)
  35. {2,6,6}*1296b (SmallGroup(1296,1860)) (Universal)
  36. {2,6,6}*1296c (SmallGroup(1296,1862)) (Universal)
  37. {2,6,6}*1296d (SmallGroup(1296,1862)) (Universal)
  38. {2,6,6}*1296e (SmallGroup(1296,2985)) (Universal)
  39. {2,6,6}*1296f (SmallGroup(1296,2985)) (Universal)
  40. {2,6,6}*1296g (SmallGroup(1296,2985)) (Universal)
  41. {2,6,6}*1320 (SmallGroup(1320,134)) (Universal)
  42. {2,6,6}*1344a (SmallGroup(1344,11684)) (Universal)
  43. {2,6,6}*1344b (SmallGroup(1344,11684)) (Universal)
  44. {2,6,6}*1344c (SmallGroup(1344,11684)) (Universal)
  45. {2,6,6}*1440a (SmallGroup(1440,5842)) (Universal)
  46. {2,6,6}*1440b (SmallGroup(1440,5849)) (Universal)
  47. {2,6,6}*1440c (SmallGroup(1440,5849)) (Universal)
  48. {2,6,6}*1440d (SmallGroup(1440,5849)) (Universal)
  49. {2,6,6}*1728a (SmallGroup(1728,46116)) (Universal)
  50. {2,6,6}*1728b (SmallGroup(1728,46116)) (Universal)
  51. {2,6,6}*1728c (SmallGroup(1728,47874)) (Universal)
  52. {2,6,6}*1920 (SmallGroup(1920,240977)) (Universal)
  53. {2,6,6}*1944 (SmallGroup(1944,941)) (Universal)