Questions?
See the FAQ
or other info.

Polytopes of Type {4,6,4}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 4)

There are 55 polytopes of this type in this atlas. They are :
  1. {4,6,4}*192a (SmallGroup(192,1149)) (Universal)
  2. {4,6,4}*192b (SmallGroup(192,1472)) (Universal)
  3. {4,6,4}*192c (SmallGroup(192,1472)) (Universal)
  4. {4,6,4}*192d (SmallGroup(192,1538)) (Universal)
  5. {4,6,4}*192e (SmallGroup(192,1538)) (Universal)
  6. {4,6,4}*192f (SmallGroup(192,1538)) (Universal)
  7. {4,6,4}*192g (SmallGroup(192,1538)) (Universal)
  8. {4,6,4}*384a (SmallGroup(384,20051)) (Universal)
  9. {4,6,4}*384b (SmallGroup(384,20051)) (Universal)
  10. {4,6,4}*384c (SmallGroup(384,20163)) (Universal)
  11. {4,6,4}*384d (SmallGroup(384,20163)) (Universal)
  12. {4,6,4}*384e (SmallGroup(384,20163)) (Universal)
  13. {4,6,4}*384f (SmallGroup(384,20163))
  14. {4,6,4}*576a (SmallGroup(576,8399)) (Universal)
  15. {4,6,4}*576b (SmallGroup(576,8399)) (Universal)
  16. {4,6,4}*720a (SmallGroup(720,763))
  17. {4,6,4}*720b (SmallGroup(720,763))
  18. {4,6,4}*768a (SmallGroup(768,1087581)) (Universal)
  19. {4,6,4}*768b (SmallGroup(768,1087581)) (Universal)
  20. {4,6,4}*768c (SmallGroup(768,1088921)) (Universal)
  21. {4,6,4}*768d (SmallGroup(768,1088921)) (Universal)
  22. {4,6,4}*768e (SmallGroup(768,1090070)) (Universal)
  23. {4,6,4}*768f (SmallGroup(768,1090070)) (Universal)
  24. {4,6,4}*768g (SmallGroup(768,1090183)) (Universal)
  25. {4,6,4}*768h (SmallGroup(768,1090183)) (Universal)
  26. {4,6,4}*768i (SmallGroup(768,1090220)) (Universal)
  27. {4,6,4}*768j (SmallGroup(768,1090220))
  28. {4,6,4}*768k (SmallGroup(768,1090220)) (Universal)
  29. {4,6,4}*768l (SmallGroup(768,1090234))
  30. {4,6,4}*960a (SmallGroup(960,10871)) (Universal)
  31. {4,6,4}*960b (SmallGroup(960,10871)) (Universal)
  32. {4,6,4}*1152a (SmallGroup(1152,157849))
  33. {4,6,4}*1152b (SmallGroup(1152,157849))
  34. {4,6,4}*1152c (SmallGroup(1152,157849))
  35. {4,6,4}*1152d (SmallGroup(1152,157849)) (Universal)
  36. {4,6,4}*1344a (SmallGroup(1344,11295)) (Universal)
  37. {4,6,4}*1344b (SmallGroup(1344,11295)) (Universal)
  38. {4,6,4}*1440a (SmallGroup(1440,5842)) (Universal)
  39. {4,6,4}*1440b (SmallGroup(1440,5842))
  40. {4,6,4}*1440c (SmallGroup(1440,5842))
  41. {4,6,4}*1440d (SmallGroup(1440,5842))
  42. {4,6,4}*1440e (SmallGroup(1440,5842))
  43. {4,6,4}*1440f (SmallGroup(1440,5842)) (Universal)
  44. {4,6,4}*1728a (SmallGroup(1728,30394)) (Universal)
  45. {4,6,4}*1728b (SmallGroup(1728,30394)) (Universal)
  46. {4,6,4}*1728c (SmallGroup(1728,46672)) (Universal)
  47. {4,6,4}*1728d (SmallGroup(1728,46672)) (Universal)
  48. {4,6,4}*1728e (SmallGroup(1728,47847)) (Universal)
  49. {4,6,4}*1728f (SmallGroup(1728,47847)) (Universal)
  50. {4,6,4}*1920a (SmallGroup(1920,240594)) (Universal)
  51. {4,6,4}*1920b (SmallGroup(1920,240594)) (Universal)
  52. {4,6,4}*1920c (SmallGroup(1920,240993))
  53. {4,6,4}*1920d (SmallGroup(1920,240993))
  54. {4,6,4}*1920e (SmallGroup(1920,240996))
  55. {4,6,4}*1920f (SmallGroup(1920,240996))