Questions?
See the FAQ
or other info.

Polytopes of Type {6,6,6}

This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 4)

There are 50 polytopes of this type in this atlas. They are :
  1. {6,6,6}*432a (SmallGroup(432,545)) (Universal)
  2. {6,6,6}*432b (SmallGroup(432,759)) (Universal)
  3. {6,6,6}*432c (SmallGroup(432,759)) (Universal)
  4. {6,6,6}*432d (SmallGroup(432,759)) (Universal)
  5. {6,6,6}*432e (SmallGroup(432,759)) (Universal)
  6. {6,6,6}*432f (SmallGroup(432,759)) (Universal)
  7. {6,6,6}*432g (SmallGroup(432,759)) (Universal)
  8. {6,6,6}*576a (SmallGroup(576,8659)) (Universal)
  9. {6,6,6}*576b (SmallGroup(576,8659)) (Universal)
  10. {6,6,6}*648a (SmallGroup(648,555)) (Universal)
  11. {6,6,6}*648b (SmallGroup(648,555)) (Universal)
  12. {6,6,6}*960 (SmallGroup(960,11355)) (Universal)
  13. {6,6,6}*1152a (SmallGroup(1152,157621)) (Universal)
  14. {6,6,6}*1152b (SmallGroup(1152,157621)) (Universal)
  15. {6,6,6}*1296a (SmallGroup(1296,1860)) (Universal)
  16. {6,6,6}*1296b (SmallGroup(1296,1860)) (Universal)
  17. {6,6,6}*1296c (SmallGroup(1296,2985)) (Universal)
  18. {6,6,6}*1296d (SmallGroup(1296,2985)) (Universal)
  19. {6,6,6}*1296e (SmallGroup(1296,2985)) (Universal)
  20. {6,6,6}*1296f (SmallGroup(1296,2985)) (Universal)
  21. {6,6,6}*1296g (SmallGroup(1296,2985)) (Universal)
  22. {6,6,6}*1296h (SmallGroup(1296,2985)) (Universal)
  23. {6,6,6}*1296i (SmallGroup(1296,2985)) (Universal)
  24. {6,6,6}*1296j (SmallGroup(1296,2985)) (Universal)
  25. {6,6,6}*1296k (SmallGroup(1296,2985)) (Universal)
  26. {6,6,6}*1296l (SmallGroup(1296,2985)) (Universal)
  27. {6,6,6}*1296m (SmallGroup(1296,2985)) (Universal)
  28. {6,6,6}*1296n (SmallGroup(1296,2985)) (Universal)
  29. {6,6,6}*1296o (SmallGroup(1296,2985))
  30. {6,6,6}*1296p (SmallGroup(1296,2985)) (Universal)
  31. {6,6,6}*1296q (SmallGroup(1296,3538)) (Universal)
  32. {6,6,6}*1296r (SmallGroup(1296,3538)) (Universal)
  33. {6,6,6}*1296s (SmallGroup(1296,3538)) (Universal)
  34. {6,6,6}*1296t (SmallGroup(1296,3538)) (Universal)
  35. {6,6,6}*1440a (SmallGroup(1440,5849)) (Universal)
  36. {6,6,6}*1440b (SmallGroup(1440,5849)) (Universal)
  37. {6,6,6}*1728a (SmallGroup(1728,47874)) (Universal)
  38. {6,6,6}*1728b (SmallGroup(1728,47874)) (Universal)
  39. {6,6,6}*1728c (SmallGroup(1728,47874)) (Universal)
  40. {6,6,6}*1728d (SmallGroup(1728,47874)) (Universal)
  41. {6,6,6}*1728e (SmallGroup(1728,47874)) (Universal)
  42. {6,6,6}*1728f (SmallGroup(1728,47874)) (Universal)
  43. {6,6,6}*1944a (SmallGroup(1944,2342))
  44. {6,6,6}*1944b (SmallGroup(1944,2342)) (Universal)
  45. {6,6,6}*1944c (SmallGroup(1944,2342)) (Universal)
  46. {6,6,6}*1944d (SmallGroup(1944,2342)) (Universal)
  47. {6,6,6}*1944e (SmallGroup(1944,2344)) (Universal)
  48. {6,6,6}*1944f (SmallGroup(1944,2344)) (Universal)
  49. {6,6,6}*1944g (SmallGroup(1944,2344)) (Universal)
  50. {6,6,6}*1944h (SmallGroup(1944,2344)) (Universal)